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Semi-supervised Node Classification
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• Given a graph 𝒢 = (𝑉, 𝐸) with adjacency matrix 𝐀; 
feature vector 𝐱 for each node;
a few labeled nodes (orange/blue)

• Find the class label for each of the 
remaining nodes.

PL

AI

Graph Neural Networks (GNNs) 
are effective and widely-adopted 
approaches for this problem.

However, many existing GNNs relies on 
the homophily assumption in the network.



Graphs: Homophily and the Beyond
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“Opposites Attract”
Majority of linked nodes are different

[Newman Networks18, Newman 04, Lee+ arXiv18, Chau+ ECML/PKDD06]

• Friend network (e.g., talkative / silent friends)
• Protein structures (wrt. amino acid types)
• E-commerce (wrt. fraudsters / accomplices)

“Birds of a feather, flock together”
Majority of linked nodes are similar

• Social Networks (wrt. political beliefs, age)
• Citation Networks (wrt. research area)

Zachary’s Karate Club

Homophily Heterophily

Largely 
Overlooked
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Auction 
NetworkFraudsters

Accomplices

Honest Users

https://global.oup.com/academic/product/networks-9780198805090?cc=us&lang=en&
http://www-personal.umich.edu/~mejn/networks/
https://arxiv.org/pdf/1809.07697.pdf
http://www.cs.cmu.edu/~dchau/papers/auction_fraud_pkdd06.pdf


Our Contributions
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We reveal current limitations of GNNs in 
heterophily.

We identify key design choices that boost learning 
in heterophily, without sacrificing in homophily, and 
analyze them theoretically. 

We conduct extensive empirical evaluation
across the full spectrum of low-to-high homophily, 
which confirms the effectiveness of the designs. 



Current Limitations of GNNs in Heterophily
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Under heterophily, all existing methods fail to perform better than 
Multilayer Perceptron (MLP), which is graph agnostic. 

Mean
Accuracy



Designs for Boosting Learning in Heterophily
• (D1) Ego- and Neighbor-embedding Separation;

6

r1
(k)

r2
(k)

r3
(k)

r5
(k)

r7
(k)

r8
(k)

r9
(k)

r12
(k)

r14
(k)

𝑟!
(#$!) = AGGR({⬤}) 𝑟!

(#$!) = COMBINE( , AGGR ⬤ )

r1
(k)

r2
(k)

r3
(k)

r5
(k)

r7
(k)

r8
(k)

r9
(k)

r12
(k)

r14
(k)



Designs for Boosting Learning in Heterophily
• (D1) Ego- and Neighbor-embedding Separation;
• (D2) Higher-order Neighborhoods;
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Designs for Boosting Learning in Heterophily
• (D1) Ego- and Neighbor-embedding Separation;
• (D2) Higher-order Neighborhoods;
• (D3) Combination of Intermediate Representations. 
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Designs for Boosting Learning in Heterophily
• (D1) Ego- and Neighbor-embedding Separation;
• (D2) Higher-order Neighborhoods;
• (D3) Combination of Intermediate Representations. 
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Empirical Evaluation of Identified Designs
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Table 3: Statistics for Synthetic Datasets
Benchmark Name #Nodes |V| #Edges |E| #Classes |Y| #Features F Homophily h #Graphs

syn-cora 1, 490 2, 965 to 2, 968 5 cora [25, 35] [0, 0.1, . . . , 1] 33 (3 per h)
syn-products 10, 000 59, 640 to 59, 648 10 ogbn-products [10] [0, 0.1, . . . , 1] 33 (3 per h)

5.1 Evaluation on Synthetic Benchmarks

Synthetic datasets & setup We generate synthetic graphs with various homophily ratios h (cf.
table below) by adopting an approach similar to [12]. In App. G, we describe the data generation
process, the experimental setup, and the data statistics in detail. All methods share the same training,
validation and test splits (25%, 25%, 50% per class), and we report the average accuracy and standard
deviation (stdev) over three generated graphs per heterophily level and benchmark dataset.
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(a) syn-cora (Table G.2)
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(b) syn-products (Table G.3). GAT
out of memory; MixHop acc < 30%.

Figure 2: Performance of GNN mod-
els on synthetic datasets. H2GCN-
2 outperforms baseline models in
most heterophily settings, while ty-
ing with other models in homophily.

Model comparison Figure 2 shows the mean test accuracy
(and stdev) over all random splits of our synthetic benchmarks.
We observe similar trends on both benchmarks: H2GCN has
the best trend overall, outperforming the baseline models in
most heterophily settings, while tying with other models in
homophily. The performance of GCN, GAT and MixHop,
which mix the ego- and neighbor-embeddings, increases with
respect to the homophily level. But, while they achieve near-
perfect accuracy under strong homophily (h ! 1), they are
significantly less accurate than MLP (near-flat performance
curve as it is graph-agnostic) for many heterophily settings.
GraphSAGE and GCN-Cheby, which leverage some of the
identified designs D1-D3 (Table 2, § 3), are more competitive
in such settings. We note that all the methods—except GCN
and GAT—learn more effectively under perfect heterophily
(h=0) than weaker settings (e.g., h 2 [0.1, 0.3]), as evidenced
by the J-shaped performance curves in low-homophily ranges.

Significance of design choices Using syn-products, we
show the significance of designs D1-D3 (§ 3.1) through abla-
tion studies with variants of H2GCN (Fig. 3, Table G.4).

(D1) Ego- and Neighbor-embedding Separation. We con-
sider H2GCN-1 variants that separate the ego- and neighbor-
embeddings and model: (S0) neighborhoods N̄1 and N̄2 (i.e.,
H2GCN-1); (S1) only the 1-hop neighborhood N̄1 in Eq. (5);
and their counterparts that do not separate the two embeddings
and use: (NS0) neighborhoods N1 and N2 (including v); and
(NS1) only the 1-hop neighborhood N1. In Fig. 3a, we see that the two variants that learn separate
embedding functions significantly outperform the others (NS0/1) in heterophily settings (h < 0.7)
by up to 40%, which shows that design D1 is critical for success in heterophily. Vanilla H2GCN-1
(S0) performs best for all homophily levels.

(D2) Higher-order Neighborhoods. For this design, we consider three variants of H2GCN-1 without
specific neighborhoods: (N0) without the 0-hop neighborhood N0(v) = v (i.e, the ego-embedding)
(N1) without N̄1(v); and (N2) without N̄2(v). Figure 3b shows that H2GCN-1 consistently performs
better than all the variants, indicating that combining all sub-neighborhoods works best. Among the
variants, in heterophily settings, N0(v) contributes most to the performance (N0 causes significant
decrease in accuracy), followed by N̄1(v), and N̄2(v). However, when h � 0.7, the importance of
sub-neighborhoods is reversed. Thus, the ego-features are the most important in heterophily, and
higher-order neighborhoods contribute the most in homophily. The design of H2GCN allows it to
effectively combine information from different neighborhoods, adapting to all levels of homophily.

(D3) Combination of Intermediate Representations. We consider three variants (K-0,1,2) of H2GCN-2
that drop from the final representation of Eq. (7) the 0th, 1st or 2nd-round intermediate representation,
respectively. We also consider only the 2nd intermediate representation as final, which is akin to what
the other GNN models do. Figure 3c shows that H2GCN-2, which combines all the intermediate
representations, performs the best, followed by the variant K2 that skips the round-2 representation.
The ego-embedding is the most important for heterophily h  0.5 (see trend of K0).
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syn-products

Strong 
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Strong 
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(a) Design D1: Embed-
ding separation.
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(b) Design D2: Higher-
order neighborhoods.
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(c) Design D3: Intermedi-
ate representations.
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(d) Accuracy per degree in
hetero/homo-phily.

Figure 3: (a)-(c): Significance of design choices D1-D3 via ablation studies. (d): Performance of
H2GCN for different node degree ranges. In heterophily, the performance gap between low- and
high-degree nodes is significantly larger than in homophily, i.e., low-degree nodes pose challenges.

The challenging case of low-degree nodes Figure 3d plots the mean accuracy of H2GCN variants
on syn-products for different node degree ranges both in a heterophily and a homophily setting
(h 2 {0.2, 0.8}). We observe that under heterophily there is a significantly bigger performance gap
between low- and high-degree nodes: 13% for H2GCN-1 (10% for H2GCN-2) vs. less than 3%
under homophily. This is likely due to the importance of the distribution of class labels in each
neighborhood under heterophily, which is harder to estimate accurately for low-degree nodes with
few neighbors. On the other hand, in homophily, neighbors are likely to have similar classes y 2 Y ,
so the neighborhood size does not have as significant impact on the accuracy.

5.2 Evaluation on Real Benchmarks
Real datasets & setup We now evaluate the performance of our model and established GNN
models on a variety of real-world datasets [31, 24, 25, 18, 3, 27] with edge homophily ratio h ranging
from strong heterophily to strong homophily, going beyond the traditional Cora, Pubmed and Citeseer
graphs that have strong homophily (hence the good performance of existing GNNs on them). We
summarize the data in Table 4 (top), and describe them in App. H, where we also point out potential
data limitations. For all benchmarks (except Cora-Full), we use the feature vectors, class labels,
and 10 random splits (48%/32%/20% of nodes per class for train/validation/test2) provided by [21].

Model comparison Table 4 gives the mean accuracy and stdev of H2GCN variants and other
models. We observe that the H2GCN variants have consistently strong performance across the
full spectrum of low-to-high homophily: H2GCN-2 achieves the best average rank (2.9) across
all datasets (or homophily ratios h), followed by H2GCN-1 (3.7). Other models that use some
of the designs D1-D3 (§ 3.1), including GraphSAGE and GCN-Cheby, also perform significantly
better than GCN and GAT which lack these designs. Here, we also report the best results among
the three recently-proposed GEOM-GCN variants (§ 4), directly from the paper [21]: other models
(including ours) outperform this method significantly under heterophily. We note that MLP is a
competitive baseline under strong heterophily, indicating that the existing models do not use the
graph information effectively, or the latter is misleading in such cases. All models perform poorly
on Squirrel and Actor likely due to their low-quality node features (small correlation with class
labels). Also, Squirrel and Chameleon are dense, with many nodes sharing the same neighbors.

Table 4: Real data: mean accuracy ± stdev over different data splits. Best graph-aware model
highlighted in gray. Asterisk “*” denotes results obtained from [21] and “N/A” results (for Cora Full)
not reported in the paper. We note that GAT runs out of memory on Cora Full in our experiments.

Texas Wisconsin Actor Squirrel Chameleon Cornell Cora Full Citeseer Pubmed Cora
Hom. ratio h 0.11 0.21 0.22 0.22 0.23 0.3 0.57 0.74 0.8 0.81

Av
g

R
an

k

#Nodes |V| 183 251 7,600 5,201 2,277 183 19,793 3,327 19,717 2,708
#Edges |E| 295 466 26,752 198,493 31,421 280 63,421 4,676 44,327 5,278
#Classes |Y| 5 5 5 5 5 5 70 7 3 6

H2GCN-1 83.24±7.07 84.31±3.70 34.31±1.31 28.98±1.97 52.96±2.09 78.11±6.68 67.49±0.78 76.72±1.50 88.50±0.64 86.34±1.56 3.7
H2GCN-2 80.00±6.77 83.14±4.26 34.49±1.63 32.33±1.94 58.38±1.76 79.46±4.80 68.58±0.34 76.67±1.39 88.34±0.68 87.67±1.42 2.9
GraphSAGE 82.70±5.87 81.76±5.55 34.37±1.30 41.05±1.08 58.71±2.30 75.95±5.17 65.80±0.59 75.61±1.57 88.01±0.77 86.60±1.82 3.8
GCN-Cheby 78.65±5.76 77.45±4.83 33.80±0.83 40.86±1.49 63.38±1.37 71.35±9.89 67.14±0.58 76.25±1.76 88.08±0.52 86.86±0.96 3.9
MixHop 74.59±8.94 71.96±3.70 25.43±1.93 29.08±3.76 46.10±4.71 67.84±9.40 58.77±0.60 70.75±2.95 80.75±2.29 83.10±2.03 7.5

GCN 59.46±5.25 59.80±6.99 30.09±1.00 36.68±1.65 60.26±2.42 57.03±4.67 67.81±0.50 76.41±1.63 87.30±0.68 87.24±1.24 5.3
GAT* 58.38 49.41 28.45 30.03 42.93 54.32 N/A 74.32 87.62 86.37 7.6
GEOM-GCN* 67.57 64.12 31.63 38.14 60.90 60.81 N/A 77.99 90.05 85.27 4.6

MLP 81.08±5.41 84.12±2.69 35.53±1.23 29.29±1.40 46.51±2.53 80.81±6.91 58.53±0.46 72.36±2.01 86.63±0.38 74.61±1.97 5.3

2[21] claims that the ratios are 60%/20%/20%, which is different from the actual data splits shared on GitHub.
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benchmark highlighted in gray. Asterisk “*” denotes results obtained from [26] and “N/A” results
(for Cora Full) were not reported in the paper.

Texas Wisconsin Actor Squirrel Chameleon Cornell Cora Full Citeseer Pubmed Cora
Hom. ratio h 0.11 0.21 0.22 0.22 0.23 0.3 0.57 0.74 0.8 0.81
#Nodes |V| 183 251 7,600 5,201 2,277 183 19,793 3,327 19,717 2,708
#Edges |E| 295 466 26,752 198,493 31,421 280 63,421 4,676 44,327 5,278
#Classes |Y| 5 5 5 5 5 5 70 7 3 6

H2GCN-1 84.86±6.77 86.67±4.69 35.86±1.03 36.42±1.89 57.11±1.58 82.16±4.80 68.13±0.49 77.07±1.64 89.40±0.34 86.92±1.37

H2GCN-2 82.16±5.28 85.88±4.22 35.62±1.30 37.90±2.02 59.39±1.98 82.16±6.00 69.05±0.37 76.88±1.77 89.59±0.33 87.81±1.35

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 65.14±0.75 76.04±1.30 88.45±0.50 86.90±1.04

GCN-Cheby 77.30±4.07 79.41±4.46 34.11±1.09 43.86±1.64 55.24±2.76 74.32±7.46 67.41±0.69 75.82±1.53 88.72±0.55 86.76±0.95

MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 73.51±6.34 65.59±0.34 76.26±1.33 85.31±0.61 87.61±0.85

SAGE+JK 83.78±2.21 81.96±4.96 34.28±1.01 40.85±1.29 58.11±1.97 75.68±4.03 65.31±0.58 76.05±1.37 88.34±0.62 85.96±0.83

Cheby+JK 78.38±6.37 82.55±4.57 35.14±1.37 45.03±1.73 63.79±2.27 74.59±7.87 66.87±0.29 74.98±1.18 89.07±0.30 85.49±1.27

GCN+JK 66.49±6.64 74.31±6.43 34.18±0.85 40.45±1.61 63.42±2.00 64.59±8.68 66.72±0.61 74.51±1.75 88.41±0.45 85.79±0.92

GCN 59.46±5.25 59.80±6.99 30.26±0.79 36.89±1.34 59.82±2.58 57.03±4.67 68.39±0.32 76.68±1.64 87.38±0.66 87.28±1.26

GAT 58.38±4.45 55.29±8.71 26.28±1.73 30.62±2.11 54.69±1.95 58.92±3.32 59.81±0.92 75.46±1.72 84.68±0.44 82.68±1.80

GEOM-GCN* 67.57 64.12 31.63 38.14 60.90 60.81 N/A 77.99 90.05 85.27

MLP 81.89±4.78 85.29±3.61 35.76±0.98 29.68±1.81 46.36±2.52 81.08±6.37 58.76±0.50 72.41±2.18 86.65±0.35 74.75±2.22

We analyzed various challenging datasets, going beyond the often-used benchmark datasets (Cora,
Pubmed, Citeseer), and leave as future work extending to a larger-scale experimental testbed.

Broader Impact

Homophily and heterophily are not intrinsically ethical or unethical—they are both phenomena
existing in the nature, resulting in the popular proverbs “birds of a feather flock together” and
“opposites attract”. However, many popular GNN models implicitly assume homophily; as a result,
if they are applied to networks that do not satisfy the assumption, the results may be biased, unfair,
or erroneous. In some applications, the homophily assumption may have ethical implications.
For example, a GNN model that intrinsically assumes homophily may contribute to the so-called
“filter bubble” phenomenon in a recommendation system (reinforcing existing beliefs/views, and
downplaying the opposite ones), or make minority groups less visible in social networks. In other
cases, a reliance on homophily may hinder scientific progress. Among other domains, this is critical
for applying GNN models to molecular and protein structures, where the connected nodes often
belong to different classes, and thus successful methods will need to model heterophily successfully.

Our work has the potential to rectify some of these potential negative consequences of existing GNN
work. While our methodology does not change the amount of homophily in a network, moving
beyond a reliance on homophily can be a key to improve the fairness, diversity and performance
in applications using GNNs. We hope that this paper will raise more awareness and discussions
regarding the homophily limitations of existing GNN models, and help researchers design models
which have the power of learning in both homophily and heterophily settings.
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• In synthetic graphs with heterophily, the identified designs help H2GCN 
perform up to 40% better in accuracy compared to the variants without them.

• In real graphs with heterophily, methods with our identified designs perform 
up to 27% better compared to vanilla GCN.

• Under homophily, methods with our identified designs remain competitive. 
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