RESEARCH INTERESTS

I am an Applied Scientist at Amazon working on **pretraining** foundational **Small Language Models (SLMs)** with up to 10B parameters. I focus on building tiny but mighty models following state-of-the-art practice in LLM architectural design and pretraining data curation, and conduct research on **data & hyperparameter scaling law**. Besides generative model pretraining, I also have experience in **contrastive fine-tuning** of **text embedding models** for **retrieval** tasks.

During my PhD, my research focused on **Graph Representation Learning** and **Graph Neural Networks** (**GNNs**), particularly their limitations, robustness, fairness, and applications in complex, large-scale environments. A key aspect of my work involves advancing GNN performance on **heterophilous graphs** (where connected nodes have dissimilar labels & features).

EDUCATION

University of Michigan, Ann Arbor, MI, USA

- Ph.D. in Computer Science and Engineering

 Advancing Graph Neural Networks for Complex Data: A Perspective Beyond Homophily

 Advisor: Prof. Danai Koutra
- M.S. in Electrical and Computer Engineering

Aug. 2017 - May. 2019

Xi'an Jiaotong University, Xi'an, Shaanxi, China

- B.Eng. in Automation (Honors Engineering Program) Aug. 2013 Jun. 2017
- Special Class for Gifted Young Aug. 2011 Jun. 2013
 A honors high school program for nationwide selected middle school graduates.

WORK EXPERIENCES

Amazon, Palo Alto, CA, USA

Jun. 2024 - Present

Applied Scientist, Store Foundational AI

- Responsible for pretraining foundational Small Language Models (SLMs) with less than 10B params following state-of-the-art LLM architectural design and pretraining data curation.
- Conducts research on data & hyperparameter scaling law for optimizing SLM pretraining.

Amazon, Palo Alto, CA, USA

Jun. 2023 - Mar. 2024

Applied Scientist Intern, Search Science & AI

- Developed a retrieval system by fine-tuning text encoders (e.g., T5) in a two-tower approach, tailored to meet the unique requirements and goals of creating a new Amazon search experience.
- Implemented a comprehensive full-stack pipeline, which includes data curation and cleaning, language model fine-tuning with contrastive learning, inferencing, and evaluation.
- Conducted targeted experiments to assess the model's performance and effectiveness.

Amazon, Palo Alto, CA, USA

Jan. 2022 - Feb. 2023

Applied Scientist Intern, Search Science & AI

- Developed an advanced distributed framework for Graph Neural Network (GNN) training on web-scale datasets. This framework streamlines previous methods and enhances performance and speed. It achieves these improvements by utilizing randomized graph partitions and a novel time-based model aggregation mechanism.
- Published a research paper in ACM Transactions on Knowledge Discovery from Data (TKDD).

Adobe Inc., San Jose, CA, USA

Jun. 2020 - Aug. 2020

Data Science Research Intern (Remote), Adobe Research

- Designed CPGNN, a GNN framework which adapts to the homophily level in the graphs by incorporating belief propagation with learnable compatibility into GNN message passing.
- Paper published in AAAI 2021 [4]; US and CN patents pending.

PUBLICATIONS

Google Scholar: https://scholar.google.com/citations?user=KiGFQ0QAAAAJ

• Impact: 1400+ citations (as of September 2024)

In Peer-reviewed Conference Proceedings

- [1] On the Impact of Feature Heterophily on Link Prediction with Graph Neural Networks <u>Jiong Zhu</u>*, Gaotang Li*, Yao-An Yang, Jing Zhu, Xuehao Cui, Danai Koutra **NeurIPS 2024** Conference on Neural Information Processing Systems. [link]
- [2] On Performance Discrepancies Across Local Homophily Levels in Graph Neural Networks Donald Loveland, <u>Jiong Zhu</u>, Mark Heimann, Ben Fish, Michael T Schaub, Danai Koutra LoG 2023 - Learning on Graphs Conference 2023. [link]
 Oral presentation at proceedings track.
- [3] How does Heterophily Impact the Robustness of Graph Neural Networks? Theoretical Connections and Practical Implications

 Jiong Zhu, Junchen Jin, Donald Loveland, Michael T Schaub, and Danai Koutra

 KDD 2022 ACM SIGKDD Conference on Knowledge Discovery and Data Mining. [link]

 Research track with oral presentation, acceptance rate: 15.0%.
- [4] Graph Neural Networks with Heterophily Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra
 - AAAI 2021 AAAI Conference on Artificial Intelligence. [link]
- [5] Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra NeurIPS 2020 Conference on Neural Information Processing Systems. [link]

 ↑ Receives more than 970 citations as of September 2024, and was taught in Northeastern University (Spring 2021, PHYS 7332: Network Data Science 2).
- [6] GroupINN: Grouping-based Interpretable Neural Network for Classification of Limited, Noisy Brain Data

Yujun Yan, <u>Jiong Zhu</u>, Marlena Duda, Eric Solarz, Chandra Sripada, and Danai Koutra **KDD 2019** - ACM SIGKDD Conference on Knowledge Discovery and Data Mining. [link] ↑ Oral presentation at research track, acceptance rate: 9.2%.

In Peer-reviewed Journal

- [7] Simplifying Distributed Neural Network Training on Massive Graphs: Randomized Partitions
 Improve Model Aggregation
 Liong Thu, Aichwayya Rogarti, Edward Huang, Charles Dickors, Nikhil Rao, Karthik Subbian
 - <u>Jiong Zhu</u>, Aishwarya Reganti, Edward Huang, Charles Dickens, Nikhil Rao, Karthik Subbian, Danai Koutra

TKDD 2024 - ACM Transactions on Knowledge Discovery from Data. [link]

In Peer-reviewed Workshops

- [8] Graph Coarsening via Convolution Matching for Scalable Graph Neural Network Training Charles Dickens, Edward Huang, Aishwarya Reganti, Jiong Zhu, Karthik Subbian, Danai Koutra
 - DCAI-WebConf 2024 Workshop on Data-centric Artificial Intelligence. [link]
- [9] Simplifying Distributed Neural Network Training on Massive Graphs: Randomized Partitions Improve Model Aggregation
 - <u>Jiong Zhu</u>, Aishwarya Reganti, Edward Huang, Charles Dickens, Nikhil Rao, Karthik Subbian, Danai Koutra
 - LLW-ICML 2023 Workshop on Localized Learning. [link]
- [10] On graph neural network fairness in the presence of heterophilous neighborhoods
 Donald Loveland, <u>Jiong Zhu</u>, Mark Heimann, Ben Fish, Michael T Schaub, Danai Koutra. **DLG-KDD 2022** Workshop on Deep Learning on Graphs. [link]

Invited Contribution

[11] Heterophily and Graph Neural Networks: Past, Present and Future

<u>Jiong Zhu</u>, Yujun Yan, Mark Heimann, Lingxiao Zhao, Leman Akoglu, and Danai Koutra

<u>IEEE Data Engineering Bulletin (2023)</u>. [link]

TECHNICAL SKILLS

Programming: Python, C++, MATLAB, C#; Large-scale Data Processing: PySpark; ML Toolkits: TensorFlow, PyTorch, NeMo, Hugging Face, DGL, scikit-learn, pandas, Faiss; Visualization: Matplotlib, Plotly; Miscellaneous: IATFX, Git, Docker, AWS

SELECTED RESEARCH PROJECTS

How does Heterophily Impact the Robustness of Graph Neural Networks? Theoretical Connections and Practical Implications

Published at KDD 2022

[3]

- Goal: To explore the relation between heterophily and robustness in GNNs and its implications.
- Showed theoretically and empirically that effective structural attacks on homophilous graphs increase heterophily, and extended the analysis of change in homophily to heterophilous graphs.
- Demonstrated that a key design principle which improves GNN performance under heterophily
 can also inherently offer increased empirical and certifiable robustness, with up to 32.92% gain
 in performance against state-of-the-art attacks and 3.4x gain in certifiable robustness metrics.

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

Published at NeurIPS 2020

[5]

- Goal: To reveal and address the limitations of GNN models under heterophilous graphs.
- Identified three effective designs backed by theoretical analysis that boost learning from the graph structure under heterophily, and proposed a new model, H₂GCN, based on the designs.
- Extensive empirical analysis shows up to 40% gain in accuracy by the designs in heterophily.

STUDENTS MENTORED

- Junchen Jin (B.S.E. in University of Michigan, 2020-2022). Published paper at KDD 2022 on heterophily and robostness in GNN [3]. Currently Machine Learning Scientist at Paypal.
- Gaotang Li (B.S. in University of Michigan, 2021-2024). Published paper at NeurIPS 2024 as a co-first author. Currently PhD student at the University of Illinois Urbana-Champaign.
- Yao-An Yang (B.S. in University of Michigan, 2022-). Published paper at NeurIPS 2024.
- Xuehao Cui (B.S. in University of Michigan, 2022-2024). Published paper at NeurIPS 2024.

TEACHING EXPERIENCE

University of Michigan, Ann Arbor, MI, USA

- Graduate Student Instructor, EECS 598-008: Advanced Data Mining Winter 2019
 Teaching assistant for the graduate-level course with 45 students. Duties include leading discussion sessions, designing and grading assignments, and answering questions.
- Lecturer, Big Data Summer Institute

 Summer 2021
 Gave asynchronous lectures on data mining to undergraduates with a discussion session.

ACADEMIC SERVICE

Workshop Organizer:

• GLB 2021-2023: Workshop on Graph Learning Benchmarks at WebConf and KDD **Program Committee**: CIKM 2022 (best PC distinction), CIKM 2021, AAAI 2021 **Reviewer**: NeurIPS 2024, WebConf 2021, 2023, LoG 2022-2023 (top reviewer distinction in 2022), JMLR, TNNLS, TKDE, TKDD, JMLC, GroundedML 2022

Invited Beyond Presentations Designs

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

- Poster, Google Workshop on Scalable Algorithms for Semi-supervised and Unsupervised Learning, CA, USA (Virtual)

 Oct. 2021
- Poster, Graph Exploitation Symposium (GraphEx 2021), MA, USA (Virtual) May. 2021 On the Relationship between Heterophily and Robustness of GNNs
- Poster, Graph Exploitation Symposium (GraphEx 2022), MA, USA (Virtual) May. 2022 Beyond Homophily in GNNs: Current Limitations, Effective Designs, and Impacts on Robustness [3]-[5]
- Invited Talk, DataFun GNN Summit, China (Virtual, 4000+ live audience) Jun. 2022

OUTREACH	AI4ALL, instructor of AI introduction lectures to Michigan high-school students. Discover Engineering, volunteer of hands-on coding sessions for 8th-10th grade kids.	$2021 \\ 2022$
Honors and	LoG 2022 Top Reviewer, awarded to the top 20 reviewers served in the	2022
AWARDS	2022 Learning on Graphs Conference.	
	CIKM 2022 Best PC, awarded to the top 5.5% of the 523 program com-	$\boldsymbol{2022}$
	mittee members who are responsible for paper reviews.	
	KDD 2019 Student Travel Award, awarded by ACM SIGKDD.	2019
	National Second Prize in CUMCM (Contemporary Undergraduate Math-	2014
	ematical Contest in Modeling), awarded to the top 5.7% of the 22233 teams.	
	Pengkang Scholarship, awarded to top 2% students by XJTU.	2014